Vislt: An End-User Tool For Visualizing and Analyzing Very Large Data

Hank Childs*,§ , Eric Bruggert , Brad Whitlockt , Jeremy Mereditht , Sean Ahernt , Kathleen Bonnellt , Mark Millert ,
Gunther H. Weberx , Cyrus Harrisont , David Pugmiret , Thomas Fogal{ , Christoph Garth§ , Allen Sandersonq , E. Wes Bethel* ,
Marc DurantV, David Camp#,§ , Jean M. Favre®, Oliver Rubel* , Paul NavratilA, Matthew Wheeler® , Paul Selby?® , and Fabien Vivodtzev+

* Lawrence Berkeley National Laboratory, T Lawrence Livermore National Laboratory, ¥ Oak Ridge National Laboratory, § University of California at Davis,
9] University of Utah, V Tech-X Corporation, € Swiss National Supercomputing Center, ATexas Advanced Computing Center,
@ Atomic Weapons Establishment, + French Atomic Energy Commission, CEA/CESTA

Project Goals

Vislt is built around three primary goals:

1) Enable data understanding. This is done by supporting five broad use
cases: data exploration, visual debugging, comparative analysis,
quantitative analysis, and communication.

Support very large data sets, including the large data sets being
generated on today’s ASCR machines
Provide a robust and usable product for end users.

Successes

We describe four types of success achieved with Vislt:

1) User successes: Metrics on user success are difficult. Downloads are one metric of user interest; Vislt has been
downloaded over 200,000 times. In terms of SciDAC usage, over a dozen SciDAC code groups use Vislt as their workhorse
visualization tool and notable images from those groups are throughout this poster. In terms of institutions, LBNL and ORNL
do not keep user statistics, but their visualization teams view Vislt as their primary tool. ANL also makes heavy

use of the project. Further, LLNL has 300 regular Vislt users, AWE has 100, and CEA/CESTA has 50. Im

2) Scalability successes: In 2009, a pair of studies were run to demonstrate Vislt’s capabilities for scalability and large data. In
the first study, Vislt’s infrastructure and some of its key visualization algorithms were demonstrated to support weak scaling.
This demonstration led to Vislt being selected as a “Joule code,” a formal certification process by the US Office of
Management and Budget to ensure that programs running on high end supercomputers are capable of using the machine
efficiently. In the second study, Vislt was scaled up to tens of thousands of cores and used to visualize data sets with trillions
of cells per time slice. This study found Vislt itself to perform quite well, although overall performance was limited by the
supercomputer’s I/O bandwidth.

3) A repository for large data algorithms: Every algorithm in Vislt works in parallel and operates on large data sets. Some of
these algorithms required novel implementation that were published in research literature, most notably including particle
advection, volume rendering, and connected component identification. Further, Vislt’s large data processing is managed by
its innovative contract-based execution system.

4) Supercomputing research performed with Vislit: Vislt has been used for evaluating the benefits of evolving hardware
trends, such as GPUs, hybrid parallelism, and solid state drives.

Project Design

Vislt follows a client-server design. The client is run on the user’s local desktop machine
and performs tasks requiring interactivity. The server runs where the user’s data resides,
typically supercomputers, and processes the data in parallel. A major strength of Vislt’s
interface is interoperability: its 115 file format readers, 60 operators for data manipulation,
20 rendering methods, 190 methods for creating derived data, and 90 queries for
extracting quantitative and debugging information all work together to create a powerful
environment.

Future Challenges

Vislt will face many challenges in the future:

In the short term, 1/0 limitations will force 1/O to be de-emphasized. The
Vislt development team has invested in pertinent techniques, such as multi-
resolution processing and in situ, but these techniques will need to be
further hardened to support regular production use.

In the longer term, power limits will constrain data movement, forcing much
processing to occur in situ on novel architectures, such as GPU accelerators.
Unfortunately, Vislt's existing in situ implementation may be mismatched for
this many-core future, for two reasons. First, although Vislt can be easily
multi-threaded using a pthreads or OpenMP-type approach, this approach
may not be able to take advantage of these architectures. The many-core
future may require CUDA or OpenCL-type languages; migrating the Vislt code
base to this setting would be a substantial undertaking. Second, although

Vislt has been demonstrated to work well at high levels of concurrency, some
of its algorithms involve large data exchanges. Although these algorithms
perform well on current machines, they would violate the data movement
constraints on future machines and may need to be re-designed.

VACET & Vislt In 2006, VACET was funded to deliver petascale-capable visualization and analysis infrastructure to the SciDAC and INCITE communities. VACET chose Vislt as its primary deployment vehicle and VACET
personnel made many changes: they worked with many application groups and extended Vislt to meet their needs, they overhauled several crucial algorithms to perform better on large data, and they made changes so that Vislt could
scale to extremely high levels of concurrency and operate on very large data, leading to its selection as a Joule code. VACET successfully got SciDAC end users to adopt Vislt through a “teach them to fish” approach that included heavy
outreach, tutorials at the SciDAC conferences, SC10, and more.




